

Circular Plastic NL

Bijeenkomst Plastic Pact

Ede, April 4th, 2023

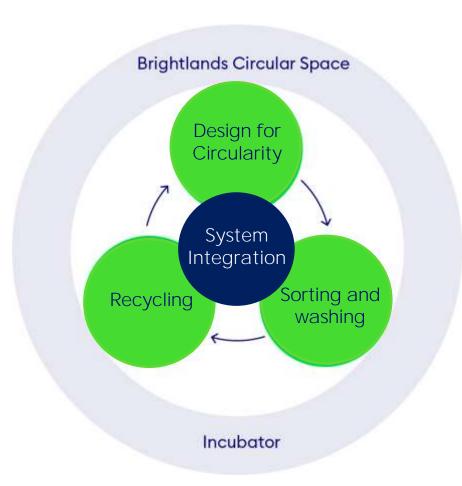
M.J. Spekreijse – Managing Director CP-NL

The NGF Circular Plastics NL program:

- Make plastics fully circular: 50% in 2030 and towards 100% in 2050
- Use subsidies to accelerate the transition by realizing material and process innovations
- Focuses on bottlenecks in different value chains to close the cycles for existing plastics
- Program in 3 phases: 2 + 2 + 4 = 8 years
- In total € 220 M available, of which € 124 M for the first phase
- Covering a wide array of TRL levels
- Research projects, show cases and pilot / demonstration facilities
- Strengthen the NL Eco system on circular plastics!

The challenge: 1 million tonnes of waste

< 15%


67 %

Courtesy of NTCP

Overview of the program

PROGRAMS Show Case P1a. System Integration P1b. Design P1c. Microplastics P2. Characterization, sorting and washing P3. Mechanical recycling of polyolefin packaging (L)DPE, HDPE/PP P4. Recycling of styrenics PS, ABS, HIPS P5. Chemical depolymerization PET, Textile, PU, tyres P6. Thermochemical recycling From waste streams P7. Brightlands Circular Space P8. Incubator

P1. Modules, Tools and Infrastructure

Modules

- Reduce, re-use, recycle strategies
- Policy, legislation, standardization, legal aspects
- Design for circular economy
- Technology
- Behavior
- Business models
- Recyclate quality
- Microplastics mitigation

Tools

- Multi criteria decission Support Tool
- Product Design Tool
- Material Selector

Infrastructure

- Microplastics laboratory
- Focus on measuring, design and mitigation

P2. Characterization, sorting and washing

Challenges

- Increase recyclate quality by sorting and washing
- Increase amount of recycled materials
- Residual stream and recycle statistics

Approach

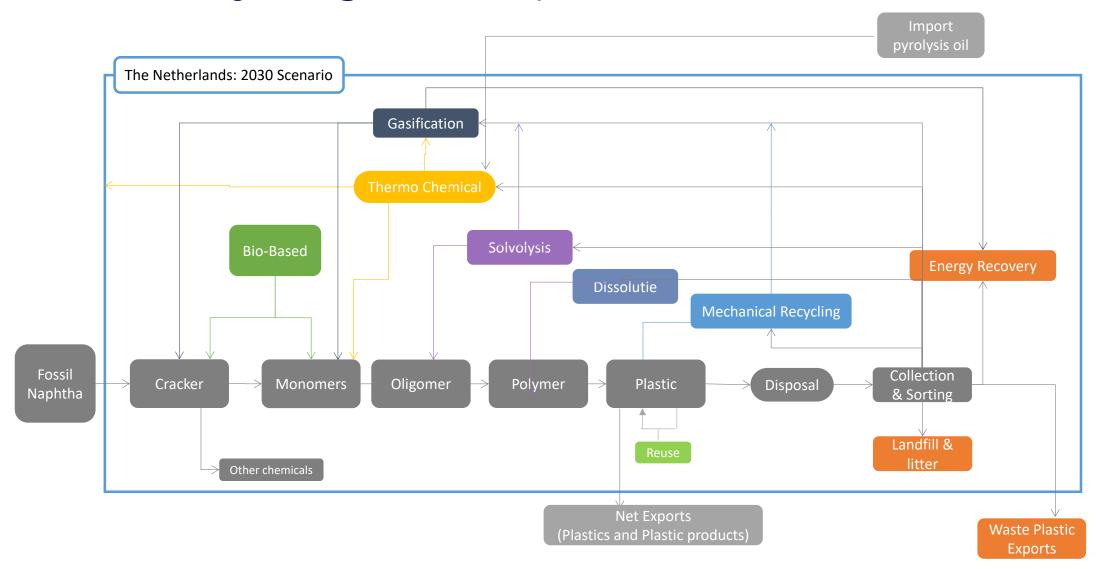
- Collection methods (pre-separation, after-separation)
- Cleaning: removal of glues, inks, labels, coatings and (food) residue
- Limit formation of microplastics
- Characterization: recognition of material species and quality
- Sorting: correct materials and volumes (food packaging, polymers from construction, textile)

P3. Mechanical recycling



Challenges

- Plastics degrades after a number of cycles of mechanical recycling
- Recyclate cannot be used in food contact applications
- Contamination by labels, inks, adhesives etc.
- Flexibles are difficult to process


Approach

- Work out two show cases:
 - HDPE/PP packaging
 - o (L)LDPE foils
- Optimize the entire value chain for design, characterization, sorting, washing and recycling

P3-6. Recycling Techniques

P8. Incubator

Challenge

 New disruptive technology is needed to increase circularity to 100% and prevent formation of microplastics/SVHC

Approach

- Strengthen low TRL research by providing academic funding
 - Develop new polymers (based on renewable feedstock)
 - o Develop new characterization methods
 - Develop new innovative recycling methods

Thank you!